MOSTLYAI

Data Without Barriers

Synthetic Data as a Catalyst for Responsible Innovation

Paul Tiwald paul.tiwald@mostly.ai

Data Democratization

Data Access

Data Insights

Synthetic Data

power of LLMs/assistants

... for everyone

MOSTLY AI

2

Why Synthetic? ... Real Data has its issues

3

What is Synthetic Data

4

Synthetic Data = Generative Al

people & algorithms

Tabular ARGN

Tabular ARGN - Auto-Regressiv Generative Networks

Computer Science > Machine Learning

[Submitted on 21 Jan 2025 (v1), last revised 6 Feb 2025 (this version, v2)]

TabularARGN: A Flexible and Efficient Auto-Regressive Framework for Generating High-Fidelity Synthetic Data

Paul Tiwald, Ivona Krchova, Andrey Sidorenko, Mariana Vargas Vieyra, Mario Scriminaci, Michael Platzer

Synthetic data generation for tabular datasets must balance fidelity, efficiency, and versatility to meet the demands of real-world applications. We introduce the Tabular Auto-Regressive Generative Network (TabularARGN), a flexible framework designed to handle mixed-type, multivariate, and sequential datasets. By training on all possible conditional probabilities, TabularARGN supports advanced features such as fairness-aware generation, imputation, and conditional generation on any subset of columns. The framework achieves state-of-the-art synthetic data quality while significantly reducing training and inference times, making it ideal for large-scale datasets with diverse structures. Evaluated across established benchmarks, including realistic datasets with complex relationships, TabularARGN demonstrates its capability to synthesize high-quality data efficiently. By unifying flexibility and performance, this framework paves the way for practical synthetic data generation across industries.

Tabular ARGN is implemented in the <u>Synthetic Data SDK</u>:

https://github.com/mostly-ai/mostlyai

pip install -U mostlyai[local]

MOSTLY AI

Search...

7

Taxonomy of deep generative models

MOSTLY•AI

8

11

Sequential Model - doctor visits

auto-regressive along the column and the time dimensions

Sequential Model with context

auto-regressive along the column, time, and table dimensions

Flexible context allows for synthesis of multi-table setups

Synthetic Data = Generative Al

people & algorithms

The main use case: Privacy and Data Access

16

Privacy/Data Access - the main use case

• reducing the "time-to-data"

Privacy/Data Access - the main use case

- reducing the "time-to-data"
- breaking down data silos within organizations (e.g. synthetic-data products)

Know your customer

OPEN CB EXPLORER

Age distribution of B2C Postpaid Customers

								the period of the second se	a an a a a a a a a a a a a a a a a a a
others		18 · 19y	0,196	0,496	0,196	0,096	iOS	Smartphones	36,7 GB
unknown 4%	Android 4096	20 - 29y	4,196	6,8%	2,396	0,496	Android IOS	Smartphones	26,0 GB
2296		30 - 39y	9,7%	8,196	4,596	0,896	Android IOS	Smartphones	14,9 GB
		40 - 49y	9,6%	8,096	4,8%	0,996	Android IOS	Smartphones	11,9 GB
	1	50 - 59y	8,996	6,3%	4,796	0,996	Android iOS	Smartphones	9,5 GB
		60 - 69y	5,096	2,596	2,896	0,696	Android iOS unknown	unknown Smartphones	6,0 GB
105 3496		70 - 79y	1,996	0,996	1,496	0,496	Android iOS unknown	unknown Smartphones	3,3 GB
		>80y	0,9%	0,696	1,096	0,496	Android IOS unknown	unknown Smartphones	4,0 GB

MOSTLY AI

Privacy/Data Access - the main use case

- reducing the "time-to-data"
- breaking down data silos within organizations (e.g. synthetic-data products)
- share data between subsidiaries in different countries
- share data between organizations (e.g. clean rooms)

20

Privacy/Data Access - the main use case

- reducing the "time-to-data"
- breaking down data silos within organizations (e.g. synthetic-data products)
- share data between subsidiaries in different countries
- share data between organizations (e.g. clean rooms)
- open-data initiatives by public entities

make the information in EPCs accessible

Powered by MOSTLY-AI 🗆 **Energy Performance Certificate - Geoclustering** 🕅 EPC - Analysis 🛛 📃 Synthetic EPC Analysis (<) Q ≣ [] DPR412_classification construction_year degree_days altitude floors net_area heat_loss_surface 13 2017 2981 537 0 622.69 1664 1970 3396 840 0 164.15 579.5 8 2005 2426 197 1 129.18 487.23 8 1900 2765 354 1 74.37 228.65 4 13 0 5743.9 1975 2591 265 2532.5 5 1940 2778 283 0 6678.71 11930.02 6 1930 2741 345 0 299.21 1340.18 1900 664 0 145.38 623.28 4 3224 2528 172 2 413.73 1992 197.347 4 12 2022 2961 405 0 81.68 801.35 1-10 of 2519 Rows per page 10 0 $|\langle \langle \rangle \rangle|$

MODERATE

Horizon Europe research and innovation programme under grant agreement No 101069834. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or CINEA. Neither the European Union nor the granting authority can be held responsible for. About MODERATE

In a nutshell News Contact

https://tools.eeb.eurac.edu/epc_clustering/piemonte/

MOSTLY•AI

GenSyn Workshop, CAiSE - 16.6.2025 | PUBLIC

1

A

E

How to test Synthetic-Data Privacy

We must not be able to infer <u>more</u> about an individual, when that person is included in the database used for synthesis.

MOSTLY•AI

How to test Synthetic-Data Privacy - Empirically

	NB	SVM	KNN	RF	LR	FRNN	ENS	DUM	RMEAN
Target T	42.8±5	43±6.6	41.6±9.3	49.8±9.4	38.3±3.7	49.1±9.8	45±6.8	32	44.2±3.8
Synthetic S_T	42.1±4.2	39.5±7.3	36.2±6.8	37.9±5.9	36.5±6	37±6.3	39.7±6.1	32	38.4±2

Accuracy scores for 50 randomly chosen subjects, that were part of training

Accuracy scores for 50 randomly chosen subjects, that were NOT part of training

	NB	SVM	KNN	RF	LR	FRNN	ENS	DUM	RMEAN
Target T '	42.1±5	39.9±7.1	36.9±5.7	39.7±5.1	37.6±4.1	39.1±5	39.7±5.9	32	39.3±1.6
Synthetic S_r ,	43.7±4.2	40.4±6.4	35.9±6.4	39.1±6.2	36.9±4.6	38±5.8	40.5±7	32	39.2±2.4

SBA Research, 2020

How to test Synthetic-Data Privacy - Mathematically

$$\Pr[\mathcal{A}(T)] \le e^{\epsilon} \cdot \Pr[\mathcal{A}(T')]$$

- gold standard definition of privacy
- idea: limit influence of single individuals
- provides a mathematical guaranteed upper bound (ε) for the difference in outcomes of an algorithm A applied to the adjacent data sets T and T'

Differential Privacy

ML on synthetic data

Synthetic Switzerland

https://www.youtube.com/watch?v=Rt5gXcIc0jY

- Switzerland has around 9 Mio. Inhabitants
- Only 15% (1/9) provide explicit consent for marketing use
- 8/9 remain locked behind privacy
- Synthetic Switzerland mirrors population patterns without real identities
- We can now analyse and train models with 9/9 citizens instead of 1/9
- Zero personal data is used

Rebalancing of underrepresented Classes

MOSTLY•AI

🚥 Open in Colab

Rebalancing of underrepresented Classes

Imputation

Smart Imputation of Missing Data

MOSTLY•AI

Fair synthetic data

Fair Synthetic Data

... subject to Strong Statistical Parity

https://openreview.net/pdf?id=HbU5QuPZj6

score

MOSTLY•AI

"Simulation"

Simulation with Synthetic Data

Simulation through Flexible Conditional Generation

Simulation with Synthetic Data

International Journal of Research in Marketing

Volume 39, Issue 4, December 2022, Pages 988-1018

Full length article Customer base analysis with recurrent neural networks

Jan Valendin ^a 😤 🖾, Thomas Reutterer ^a 🖾, Michael Platzer ^b 🖾

, Klaudius Kalcher ^b 🖾

Customer base analysis with recurrent neural networks

Charity Contributions: Calibration, Actual and Predicted Holdout

Synthetic Data = Generative Al

people & algorithms

What is Synthetic Data

Get reasonable mock data out of "nothing"

https://github.com/mostly-ai/mostlyai-mock

pip install -U mostlyai-mock

Data Democratization

Data Access

Data Insights

Synthetic Data

power of LLMs/assistants

... for everyone

MOSTLY AI

Use natural language to get insights

app.mostly.ai

MOSTLY•AI

THE MOSTLY AI PRIZE

CASH PRIZE OF 100k USD

https://www.mostlyaiprize.com/