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Synthetic Data as a Catalyst for Responsible Innovation

Data Without Barriers 
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Data Access

Data Democratization

2

Data Insights

… for everyone

Synthetic Data power of LLMs/assistants
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Why Synthetic? … Real Data has its issues
3

useful, but
re-identifiable

private, but
useless
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What is Synthetic Data
4

random data self-generated data model-generated data
rule-based

AI-generated data
“data-based”
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Synthetic Data = Generative AI
5

Actual Data
privacy-restricted

biased
incomplete

Synthetic Data
realistic

representative
anonymous

granular level Data Consumers
people & algorithms

Generative Model
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Tabular ARGN
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Tabular ARGN - Auto-Regressiv Generative Networks

Tabular ARGN is implemented in the Synthetic Data SDK:

https://github.com/mostly-ai/mostlyai

pip install -U mostlyai[local]

https://github.com/mostly-ai/mostlyai
https://github.com/mostly-ai/mostlyai
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● directly learn density p(x)
● examples: autoregressive models (Transformer, RNNs), 

flow-based models

Taxonomy of deep generative models
8

Learning by 
comparison

Generative 
models

Implicit 
density

Explicit 
density

Exact density

Unnormalized 
density

Approximate 
density

● only care about generation, not p(x)
● instead of maximizing the density, compare real vs 

generated sample (classification problem)
● examples: GAN, GMMN

● learn unnormalized density E(x)∝ p(x)
● examples: EBM

● learn approximation (e.g. lower bound) of density
L(x) ≤ p(x)

● examples: VAE, diffusion models
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Fixed (column) Order Training Phase

patients data set:

x1 - age

x2 - gender

x3 - blood type

loss function:

Flat Model
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Any (column) Order Training Phase

patients data set:

x1 - age

x2 - gender

x3 - blood type

loss function:

Flat Model



GenSyn Workshop, CAiSE - 16.6.2025 | PUBLIC

11

Generation Phase

patients data set:

x1 - age

x2 - gender

x3 - blood type

Flat Model
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auto-regressive along the column and the time dimensions

Sequential Model - doctor visits

date systolic blood pressure body weight

15.1.2022 140 85

19.1.2022 138 85

3.4.2022 135 84

16.7.2022 132 ?

history encoder

←
 ti

m
e
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auto-regressive along the column, time, and table dimensions

Sequential Model with context

date systolic blood pressure body weight

15.1.2022 140 85

19.1.2022 138 85

3.4.2022 135 84

16.7.2022 132 ?

history encoder

age gender blood type

36 m A+

context proc.

←
 ti

m
e
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Flexible context allows for synthesis of multi-table setups

patients

doc visitsinsurance claims

prescriptions

lab visits
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Synthetic Data = Generative AI
15

Actual Data
privacy-restricted

biased
incomplete

Synthetic Data
realistic

representative
anonymous

granular level Data Consumers
people & algorithms

Generative Model
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The main use case:
Privacy and Data Access
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● reducing the “time-to-data”

Privacy/Data Access - the main use case
17
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● reducing the “time-to-data”

● breaking down data silos within organizations
(e.g. synthetic-data products)

Privacy/Data Access - the main use case
18
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Know your customer
19



GenSyn Workshop, CAiSE - 16.6.2025 | PUBLIC

● reducing the “time-to-data”

● breaking down data silos within organizations
(e.g. synthetic-data products)

● share data between subsidiaries in different countries
● share data between organizations (e.g. clean rooms)

Privacy/Data Access - the main use case
20
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● reducing the “time-to-data”

● breaking down data silos within organizations
(e.g. synthetic-data products)

● share data between subsidiaries in different countries
● share data between organizations (e.g. clean rooms)

● open-data initiatives by public entities

Privacy/Data Access - the main use case
21
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make the information in EPCs accessible
22

https://tools.eeb.eurac.edu/epc_clustering/piemonte/
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How to test Synthetic-Data Privacy
23

ST

synthesize

ST’

T
X

X

T’

X

X

X

X

?

?

Δ difference?

synthesize

infer

infer

exclude 
subject

-

We must not be able to 

infer more about an 

individual, when that 

person is included in the 

database used for 

synthesis.
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How to test Synthetic-Data Privacy - Empirically
24

Accuracy scores for 50 randomly chosen subjects, that were part of training

Accuracy scores for 50 randomly chosen subjects, that were NOT part of training

Target T’

Synthetic ST’

Target T

Synthetic ST

SBA Research, 2020
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How to test Synthetic-Data Privacy - Mathematically
25

● gold standard definition of privacy

● idea: limit influence of single individuals

● provides a mathematical guaranteed upper 
bound (ε) for the difference in outcomes of an 
algorithm A applied to the adjacent data sets T 
and T’T

X

X exclude 1 
subject

T’

X

X

X

-
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Differential Privacy
26
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ML on synthetic data
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• Switzerland has around 9 Mio. Inhabitants

• Only 15% (1/9) provide explicit consent for 
marketing use

• 8/9 remain locked behind privacy

• Synthetic Switzerland mirrors population 
patterns without real identities

• We can now analyse and train models with 9/9 
citizens instead of 1/9

• Zero personal data is used

Synthetic Switzerland

https://www.youtube.com/watch?v=Rt5gXcIc0jY
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Rebalancing of underrepresented Classes

https://colab.research.google.com/github/mostly-ai/mostlyai/blob/main/docs/tutorials/rebalancing/rebalancing.ipynb
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Rebalancing of underrepresented Classes

imbalance ratio [%]imbalance ratio [%]

A
UC

-R
O

C

model: LGBM model: random forest
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Imputation
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Smart Imputation of Missing Data

https://colab.research.google.com/github/mostly-ai/mostlyai/blob/main/docs/tutorials/smart-imputation/smart-imputation.ipynb
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Fair synthetic data
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… subject to Strong Statistical Parity

Fair Synthetic Data

https://openreview.net/pdf?id=HbU5QuPZj6
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“Simulation”
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Simulation with Synthetic Data
36
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Simulation through Flexible Conditional Generation
37

https://colab.research.google.com/github/mostly-ai/mostlyai/blob/main/docs/tutorials/smart-imputation/smart-imputation.ipynb
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Simulation with Synthetic Data
38

Customer base analysis with recurrent neural networks

https://www.sciencedirect.com/science/article/pii/S0167811622000180
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Synthetic Data = Generative AI
39

Actual Data
privacy-restricted

biased
incomplete

Synthetic Data
realistic

representative
anonymous

granular level Data Consumers
people & algorithms

Generative Model
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What is Synthetic Data
40

random data self-generated data model-generated data
rule-based

AI-generated data
“data-based”
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Get reasonable mock data out of “nothing”
41

Mock Data
reasonable

rule-adhering
granular level

Generative Model
LLM

https://github.com/mostly-ai/mostlyai-mock

pip install -U mostlyai-mock

https://github.com/mostly-ai/mostlyai-mock
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Data Access

Data Democratization

42

Data Insights

… for everyone

Synthetic Data power of LLMs/assistants
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Use natural language to get insights
43

app.mostly.ai
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https://www.mostlyaiprize.com/


